skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ruppert, Natalia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Alaska Amphibious Community Seismic Experiment (AACSE) comprised 75 ocean-bottom seismometers and 30 land stations and covered about 650 km along the segment of the subduction zone that includes Kodiak Island, the Alaska Peninsula and the Shumagin Islands between May 2018 and September 2019. This unprecedented onshore-offshore dataset provided an opportunity to compile a greatly enhanced earthquake catalog for the region by both increasing the number of detected earthquakes and improving the accuracy of their source parameters. We use all available regional and AACSE campaign seismic data to compile an earthquake catalog for the region between Kodiak and the Shumagin Islands including the Alaska Peninsula (51° N–59° N, 148° W–163° W). We apply the same processing and reporting standards to additional picks and events as the Alaska Earthquake Center currently uses for compilation of the authoritative regional earthquake catalog. Over 7200 events (both newly detected and previously reported) have been processed with AACSE data. We added about 30% more events, 60% more phase picks, lowered the magnitude of completeness by about 0.2 on average across the region, and improved location errors. All data have been published in public data archives. In addition, we test the machine-learning earthquake detection and picking algorithm EarthquakeTransformer (EQT) on the AACSE seismic dataset, comparing EQT-determined P and S picks with the new catalog. EQT is entirely trained on land data, whereas AACSE is amphibious. Overall, EQT finds 59% of P and 63% of S arrivals in the catalog within 300 km epicentral distance. The percent of catalog picks detected by EQT varies inversely with earthquake epicentral distance, and EQT performs particularly poorly on data from earthquakes recorded by instruments in the outer rise. 
    more » « less
  2. null (Ed.)
  3. Abstract We present two new seismic velocity models for Alaska from joint inversions of body-wave and ambient-noise-derived surface-wave data, using two different methods. Our work takes advantage of data from many recent temporary seismic networks, including the Incorporated Research Institutions for Seismology Alaska Transportable Array, Southern Alaska Lithosphere and Mantle Observation Network, and onshore stations of the Alaska Amphibious Community Seismic Experiment. The first model primarily covers south-central Alaska and uses body-wave arrival times with Rayleigh-wave group-velocity maps accounting for their period-dependent lateral sensitivity. The second model results from direct inversion of body-wave arrival times and surface-wave phase travel times, and covers the entire state of Alaska. The two models provide 3D compressional- (VP) and shear-wave velocity (VS) information at depths ∼0–100  km. There are many similarities as well as differences between the two models. The first model provides a clear image of the high-velocity subducting plate and the low-velocity mantle wedge, in terms of the seismic velocities and the VP/VS ratio. The statewide model provides clearer images of many features such as sedimentary basins, a high-velocity anomaly in the mantle wedge under the Denali volcanic gap, low VP in the lower crust under Brooks Range, and low velocities at the eastern edge of Yakutat terrane under the Wrangell volcanic field. From simultaneously relocated earthquakes, we also find that the depth to the subducting Pacific plate beneath southern Alaska appears to be deeper than previous models. 
    more » « less
  4. null (Ed.)
    Abstract The Mw 7.1 47 km deep earthquake that occurred on 30 November 2018 had deep societal impacts across southcentral Alaska and exhibited phenomena of broad scientific interest. We document observations that point to future directions of research and hazard mitigation. The rupture mechanism, aftershocks, and deformation of the mainshock are consistent with extension inside the Pacific plate near the down‐dip limit of flat‐slab subduction. Peak ground motions >25%g were observed across more than 8000  km2, though the most violent near‐fault shaking was avoided because the hypocenter was nearly 50 km below the surface. The ground motions show substantial variation, highlighting the influence of regional geology and near‐surface soil conditions. Aftershock activity was vigorous with roughly 300 felt events in the first six months, including two dozen aftershocks exceeding M 4.5. Broad subsidence of up to 5 cm across the region is consistent with the rupture mechanism. The passage of seismic waves and possibly the coseismic subsidence mobilized ground waters, resulting in temporary increases in stream flow. Although there were many failures of natural slopes and soils, the shaking was insufficient to reactivate many of the failures observed during the 1964 M 9.2 earthquake. This is explained by the much shorter duration of shaking as well as the lower amplitude long‐period motions in 2018. The majority of observed soil failures were in anthropogenically placed fill soils. Structural damage is attributed to both the failure of these emplaced soils as well as to the ground motion, which shows some spatial correlation to damage. However, the paucity of instrumental ground‐motion recordings outside of downtown Anchorage makes these comparisons challenging. The earthquake demonstrated the challenge of issuing tsunami warnings in complex coastal geographies and highlights the need for a targeted tsunami hazard evaluation of the region. The event also demonstrates the challenge of estimating the probabilistic hazard posed by intraslab earthquakes. 
    more » « less